
How Grammars Affect 
Languages



We would like to use grammars for evaluating strings in a language.  
For example, 3+4*5 might have a parse tree such as

E

E T+

T * F3

4 5

A simple recursive function evaluates this tree to determine the value 
23 for 3+4*5.



Like every good thing there are potential problems with this.  Consider 
the grammar

E => E+E | E*E | (E) |  E digit | digit
This gives two different parse trees for 3+4*5 and those lead to 
different values for the expression:

E

E E+

E * E3

4 5

E

E E*

E + E

3 4

5

Value = 23 Value = 35



A grammar is called ambiguous if it produces two different parse trees 
for the same string.  Ambiguity is bad; it prevents us from using parse 
trees to evaluate strings.

The grammar  E => E+E | E*E | (E) |  E digit | digit  is ambiguous.

The grammar 
E => E+T | T
T => T*F | F
F => (E) | G
G => G digit | digit

unambiguously describes the same language.



To show that the grammar
E => E+T | T
T => T*F | F
F => (E) | G
G => G digit | digit

is unambiguous we do induction on the number of +/* operators in the 
string being parsed.  This is certainly true if there is only one operator.  
Suppose it is true for all strings with n operators and a has n+1, and 
that the grammar has two parse trees for a. At some point there must 
be an instance where one parse tree uses the rule E => E+T and the 
other tree uses E => T => T*F. If the + comes before * in a then the T in 
T*F must derive a +, which it can't. If the * comes before + in a then 
the F in T*F must derive a +, which it can't.  Either way the second 
parse fails.



The difference between the grammars
E => E+E | E*E | (E) |  E digit | digit

and
E => E+T | T
T => T*F | F
F => (E) | G
G => G digit | digit

is that the latter grammar is hierarchical; operators appear in a 
specific order within the grammar rules.



The problem of determining whether a given grammar is ambiguous is 
undecidable.

There are languages that are inherently ambiguous -- every grammar 
for the language is ambiguous.  The problem of determining whether 
a given language is inherently ambiguous is also undecidable.



Consider again the string 3+4*5 and its parse trees under the grammars

E => E+T | T
T => T*F | F
F => (E) | G
G => G digit | digit

E

E T+

T * F3

4

G
E => E*T | T
T => T+F | F
F => (E) | G
G => G digit | digit

E

E T*

T + F

G

F

G 5

T

4

F

G

5F

G

3



The grammar
E => E+T | T
T => T*F | F
F => (E) | G
G => G digit | digit

has * lower in the hierarchy than + and gives multiplication 
precedence over addition. The grammar

E => E*T | T
T => T+F | F
F => (E) | G
G => G digit | digit

has + farther down the list of rules and give addition precedence over 
multiplication



In general, with hierarchical grammars the farther down in the list of 
rules an operator appears, the greater its precedence will be.

There is another property grammars give languages.  Consider the two 
grammars

E => E-T | T
T => (E) | G
G => G digit | digit

and
E => T-E | T
T => (E) | G
G => G digit | digit

These differ only in whether the E-rule is left- or right-recursive.



We use these grammars to parse the string 10-5-3

E => E-T | T
T => (E) | G
G => G digit | digit

E

E T-

E - T

G

G

3T

G 5
10

E => T-E | T
T => (E) | G
G => G digit | digit

E

T E-

E - T

G

G

10 T

G 3

5

Note that the left parse tree 
evaluates to 2 while the 
right one evaluates to 8.



In general, left-recursive rules lead to left-associative operators while 
right-recursive rules lead to right-associative operators.  We want 
most of the standard arithmetic operators to be left-associative, so 
we use rules such as E => E+T.


